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The Problem

Given: for each user, a small number of pairwise comparisons:

“User i prefers item j1 over jp"

To find: personalized preference order for each user.

Alice (x7)

Bob (x3)

Charlie (x3)
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The Problem

Given: for each user, a small number of pairwise comparisons:

“User i prefers item j; over jo"

To find: personalized preference order for each user.

@ Many kinds of user input can be turned into pairwise comparisons:
» click/no-click: Each “click” is preferred to a (randomly chosen)
“no-click”
» one-of-many: chosen item preferred to others presented
» numerical ratings: for each user, higher rated item preferred to lower
rated one.

@ Pairwise comparisons less subjective than numerical ratings
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A Classic Model in Ranking

Bradley-Terry-Luce (BTL) model: for a single user setting
@ Assume a ground-truth score vector x* € RY.

@ Governs pairwise preferences:

1
1+ exp(—(x; — x7))

Pr(j1>j2) =

e Popular for rank aggregation (fitting a single rank order to
inconsistent preference data)
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Our Approach

@ Each user has its own, personal score vector X;.. ltems with higher
score more likely to be preferred by that user.

@ Taken together, the vectors form a low-rank matrix:
for di users and do items,

X e R"*%  and rank(X) < r (r < di,d2)

@ Low-rank allows for generalization from a very small number of
per-user comparisons (similar to the case of matrix completion)
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Our contribution

o Convex ERM

» We prove it has nearly optimal sample complexity: each user needs to
make only O(rlog?(dy + d»)) pairwise comparisons

e Alternating SVM (AItSVM)

> A scalable non-convex algorithm for the hinge loss, which we found
works best in the practical large-scale settings.

» Parallel implementation: near-linear speedup with number of cores in
shared-memory machine

» Outperforms existing (rating-based) algorithms both statistically and
computationally.
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Problem Setting

@ dp users, d> items

Input
o Q C [di] X [da] X [d2] : Set of (user, item 1, item 2) triples
o Y= {Yyu € {+1,—1}: (i,j, k) € Q} : Pairwise comparisons

V., — +1 ‘“user i prefers item j to item k"
U= —1 ‘“user i prefers item k to item j”

Output

@ Predicted “score matrix” X € R9x

Xij > Xik “user i more likely to prefer item j to item k"
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Convex ERM

min Z ﬁ(Yijk(Xij—Xik))
XERMXE e

subject to || X« < \/Adid>

@ Convex optimization over di; X d> dimensional space

o Parameters: set A = O(r).
Reason: If rank(X) = r and || X||s < C, then || X < C\/rdid>

o L: appropriately chosen loss function.
E.g. logistic for the BTL model. Our results for more general losses.
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Convex ERM

Statistical performance: setup

e Each user-item-item triple (/,, k) is sampled with probability p;j.

@ No user-item pair is sampled too frequently.

Zp,-jk < L (for fixed m = E|Q|)
p did>

@ Expected risk: with Q and Y's chosen as above, for any matrix X,

EqyR(X) := expected value of Z L(Yij(Xij — Xik))
(id,k)eQ
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Convex ERM

Theorem
Suppose

e L(-) : I-Lipschitz
o X : The optimum of the convex program
Then, in the above setting,

EqyR(X) < inf RX)+ Cry BB )
N— {X:IX][« <V Adidz} . m -

Expected risk of X

The best expected risk Excess risk bound

v

O(r log? d) comparisons/user are sufficient if di, d» ~ d.
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Consistency in the Multi-user BTL model

@ Assume there is a ground-truth X* € Réxd%

XX

Pr{Vi = +1} = — o=
{ ok } l1+e X —Xi

@ ML estimation : Solving the ERM with £(z) = log(1 + exp(z)) — z.

Corollary
Suppose that Y ~ BTL(X*) where || X*||. < /Adidz. Under the sampling

assumption,
[A(di + d2)
a d2 D(IP’X*HIF’ )< Ck — log(dh + db).

Can recover the true X* with O(rlog? d) comparisons/user.

v
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ERM Lower Bound

Is the O(rlog? d) sample complexity good?
Theorem

For any estimator X as a function of Q and Y, there exists X* such that®

m

EqyR(X) > R(X") + crmin {1, M}

with probability at least %

?Under the assumption £'(0) <0, A > 1, and m > d1 + d>

v

Need at least O(r) comparisons/user.
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However, In Practice..

The size of user-item matrices?
o Netflix prize : 480,000 users x 17,000 movies

@ Personalization datasets often even larger

amazon.com Recommended for You
RETFLIN has new r d for you based on items you purchazed
et or told us you own,
The Little Big Fascinate: Your Sherlock Alice in
Things: 163 Z Triggers to Holmes [Elu- Wonderland
Ways to Pursue Persuasion and ray Blu-ray]

EXCELLENCE  Captivation

Convex optimization needs to train and store 100 ~ 10%® parameters.
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Non-Convex Algorithm

minimize Z LY - u (v; — w))

dy xr dy Xr
UER X" VER e

o Train a factored form X = UV'T (X; = u/ v;)
d2 d2
Vi v r

Now only (dy + do)r parameters .



Non-Convex Algorithm

minimize
UERdl ><r7V€Rd2><r

A
> LYk uf (vi—w)) + §(||U|!/2:+ IVII7)
(i4,k)eQ

o Add regularizer to control overfitting

d2

r
o & = = DA
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Non-Convex Implementation

e Updating U (while V is fixed) : Ranking SVM [Joachims, 2002]

“Find the personalized weight vector u; for each user.”
. A0 T
Vi, uj<arg min 5”“”2 + Z LY - u (v; — w))
Jk:(inj,k)EQ

Can be decomposed into d; independent r-dimensional SVMs
e Updating V (while U is fixed) “Embed d> item vectors into R".”

by .
Varg min S|VIE+ D L(Vie- (AT v))
versaxr | 2 (iJ.k)eQ

Also a SVM! but too large (d; x r dimensional)

@ Solution: dual coordinate ascent still O(r)
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Non-Convex Implementation
Dual Coordinate Descent [Hsieh et al., 2007]
@ Dual problem
2

1 . 1
min = Z BijkA(Uk) +X Z E*(_)‘Buk)

periflp202 || S a £ ke

@ Coordinate descent : Fix all but one variables, and optimize.

5 arg min 2 (I + 0 Vieui B+ e — ¥l

ik
+ L7 (=A(Bij + 9)),

B B+,

vj = vj + 0" Yijku;,

Vi < vik — 0" Yijku;. O(r) computation
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Alternating SVM (AItSVM)

While not converged do
@ Stochastic dual coordinate descent for V.
Fort=1,..., T,
Randomly pick (i,/, k) € Q.
Do coordinate descent for the dual variable 3jj.
Update v; and vg. O(r) computation

vy vy vYy

@ Stochastic dual coordinate descent for U.
» Fort=1,...,T,
» Randomly pick (i,/, k) € Q.
» Do coordinate descent for the dual variable .
» Update u;. O(r) computation
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Alternating SVM (AItSVM)

While not converged do
@ Stochastic dual coordinate descent for V.
Fort=1,..., T,
Randomly pick (i,/, k) € Q.
Do coordinate descent for the dual variable 3jj.
Update v; and vg. O(r) computation

vy vy vYy

@ Stochastic dual coordinate descent for U.

» Fort=1,..., T,

» Randomly pick (i,/, k) € Q.

» Do coordinate descent for the dual variable .

» Update u;. O(r) computation

Decomposability does not matter.
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Paralellization

Each coordinate descent updates at most 2r out of (dy + do)r variables.

e Can apply parallel asynchronous stochastic DCD without locking.?

# cores 1 2 4 8 16
Time(seconds) | 963.1 691.8 365.1 188.3 111.0
Speedup 1x 14x 26x 5.1x  8.7x

Table : Scalability of AltSVM on the binarized MovieLenslm dataset.

'Hsieh, Yu, and Dhillon, “PASSCoDe: Parallel Asynchronous Stochastic Dual
Coordinate Descent,” ICML 2015.
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Experiments

We compare our algorithm (with hinge loss) to
o CofiRank [Weimer et al., NIPS'07]
@ Local Collaborative Ranking [Lee et al., WWW'14]
@ Robust Binary Ranking [Yun et al., NIPS'14]
@ SGD : Stochastic Gradient Descent on our non-convex formulation.

@ Global ranking : Aggregate all comparisons and provide one ranking.

Datasets
@ Binarized MovieLenslm : 6,040 x 3,900 movies, 1m ratings
@ MovielLenslOm : 71,567 users x 10,681 movies, 10m ratings
@ Netflix prize : 480,000 users x 17,000 movies, 100m ratings
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Experimental results - Rating data

@ Compared in terms of NDCG®@10
o AItSVM takes all non-tying comparisons from the sampled ratings

Datasets # ratings/user | AltSVM SGD Global  CofiRank LCR
20 0.7059  0.6977 0.7264 0.7076 0.6977
MovielLens10m 50 0.7508 0.7452 0.7176 0.6977 0.6940
100 0.7692 0.7659 0.7101 0.6754 0.6899
20 0.7132 - 0.7605 0.6615 -
Netflix 50 0.7642 - 0.7640 0.6527 -
100 0.8007 - 0.7656 0.6385 -
04 MovieLens10m, 50 ratings/user, rank 10
' '/ == AltSVM, 1 thread
] -~ AltSVM, 4 threads
035 —  AUSVM, 16 threads
—  CofiRank

Time (seconds)
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Experimental results - Binary data

@ Compared in terms of Precision@K
o AItSVM takes C non-tying comparisons for each user.

AltSVM SGD RobiRank
Precision@ | C =1000 C =2000 C = 5000
1 0.2165 0.2973 0.3635 0.1556 0.3009
2 0.1965 0.2657 0.3297 0.1498 0.2695
5 0.1572 0.2097 0.2697 0.1236 0.2300
10 0.1265 0.1709 0.2223 0.1031 0.1922
100 0.0526 0.0678 0.0819 0.0441 0.0781

Binarized MovieLens1m, rank 100

ol ~ AISVM, 1 thread
:TJ"* ) ~ -~ AUSVM, 4 threads
i = AISVM, 16 threads

sh- . S RobiRank, 1 thread
L -~ RobiRank, 4 threads

! —  RobiRank, 16 threads

Precision@10
o <
= fd
|
i
'

0 200 400 600 800 1000
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Summary

@ Two algorithms for collaborative ranking from pairwise comparisons

o Convex relaxation
» O(rlog® d) sample complexity for arbitrarily small excess risk

@ Alternating SVM through Stochastic Dual Coordinate Descent
» Scalable and outperforming existing algorithms in ranking measures
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