Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

Dohyung Park Joe Neeman Jin Zhang Sujay Sanghavi Inderjit S. Dhillon

The University of Texas at Austin

The Problem

Given: for each user, a small number of pairwise comparisons:

"User i prefers item j_1 over j_2 "

To find: personalized preference order for each user.

The Problem

Given: for each user, a small number of pairwise comparisons:

"User i prefers item j_1 over j_2 "

To find: personalized preference order for each user.

- Many kinds of user input can be turned into pairwise comparisons:
 - click/no-click: Each "click" is preferred to a (randomly chosen) "no-click"
 - one-of-many: chosen item preferred to others presented
 - numerical ratings: for each user, higher rated item preferred to lower rated one.
- Pairwise comparisons less subjective than numerical ratings

A Classic Model in Ranking

Bradley-Terry-Luce (BTL) model: for a single user setting

- Assume a ground-truth score vector $x^* \in \mathbb{R}^d$.
- Governs pairwise preferences:

$$Pr(j_1 \succ j_2) = \frac{1}{1 + \exp(-(x_{j_1}^* - x_{j_2}^*))}$$

 Popular for rank aggregation (fitting a single rank order to inconsistent preference data)

ICML 2015

Our Approach

- Each user has its own, personal score vector $X_{i:}$. Items with higher score more likely to be preferred by that user.
- Taken together, the vectors form a low-rank matrix: for d_1 users and d_2 items,

$$X \in \mathbb{R}^{d_1 \times d_2}$$
 and $\operatorname{rank}(X) \leq r$ $(r \ll d_1, d_2)$

 Low-rank allows for generalization from a very small number of per-user comparisons (similar to the case of matrix completion)

Our contribution

Convex ERM

We prove it has nearly optimal sample complexity: each user needs to make only $O(r \log^2(d_1 + d_2))$ pairwise comparisons

Alternating SVM (AltSVM)

- A scalable non-convex algorithm for the hinge loss, which we found works best in the practical large-scale settings.
- ► Parallel implementation: near-linear speedup with number of cores in shared-memory machine
- Outperforms existing (rating-based) algorithms both statistically and computationally.

Problem Setting

• d_1 users, d_2 items

Input

- $\Omega \subseteq [d_1] \times [d_2] \times [d_2]$: Set of (user, item 1, item 2) triples
- $\mathcal{Y} \triangleq \{Y_{ijk} \in \{+1, -1\} : (i, j, k) \in \Omega\}$: Pairwise comparisons

$$Y_{ijk} = \left\{ egin{array}{ll} +1 & ext{``user i prefers item j' to item k''} \ -1 & ext{``user i prefers item k to item j''} \end{array}
ight.$$

Output

ullet Predicted "score matrix" $X \in \mathbb{R}^{d_1 \times d_2}$

 $X_{ij} > X_{ik}$ "user i more likely to prefer item j to item k"

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ 釣 Q (*)

ICML 2015

Convex ERM

$$\begin{aligned} & \min_{X \in \mathbb{R}^{d_1 \times d_2}} & & \sum_{(i,j,k) \in \Omega} \mathcal{L}(Y_{ijk}(X_{ij} - X_{ik})) \\ & \text{subject to} & & \|X\|_* \leq \sqrt{\lambda d_1 d_2} \end{aligned}$$

- Convex optimization over $d_1 \times d_2$ dimensional space
- Parameters: set $\lambda = O(r)$. Reason: If $\operatorname{rank}(X) = r$ and $\|X\|_{\infty} \leq C$, then $\|X\|_* \leq C\sqrt{rd_1d_2}$
- L: appropriately chosen loss function.
 E.g. logistic for the BTL model. Our results for more general losses.

◆ロ > ◆回 > ◆ き > ◆き > き の < ○</p>

Convex ERM

Statistical performance: setup

- Each user-item-item triple (i, j, k) is sampled with probability p_{ijk} .
- No user-item pair is sampled too frequently.

$$\sum_{k} p_{ijk} \le \kappa \frac{m}{d_1 d_2} \quad \text{(for fixed } m = \mathbb{E}|\Omega|\text{)}$$

ullet Expected risk: with Ω and Y's chosen as above, for any matrix X,

$$\mathbb{E}_{\Omega,\mathcal{Y}}R(X) \;:=\; ext{expected value of}\; \sum_{(i,j,k)\in\Omega} \mathcal{L}(Y_{ijk}(X_{ij}-X_{ik}))$$

ICML 2015

Convex ERM

Theorem

Suppose

- $\mathcal{L}(\cdot)$: 1-Lipschitz
- \hat{X} : The optimum of the convex program

Then, in the above setting,

$$\underbrace{\mathbb{E}_{\Omega,\mathcal{Y}}R(\hat{X})}_{\textit{Expected risk of }\hat{X}} \leq \inf_{\underbrace{\{X: \|X\|_* \leq \sqrt{\lambda d_1 d_2}\}}_{\textit{The best expected risk}}} R(X) + \underbrace{C\kappa\sqrt{\frac{\lambda(d_1+d_2)}{m}}\log(d_1+d_2)}_{\textit{Excess risk bound}}.$$

 $O(r \log^2 d)$ comparisons/user are sufficient if $d_1, d_2 \approx d$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q (^

Consistency in the Multi-user BTL model

• Assume there is a ground-truth $X^* \in \mathbb{R}^{d_1 \times d_2}$.

$$\Pr\{Y_{ijk} = +1\} = \frac{e^{X_{ij}^* - X_{ik}^*}}{1 + e^{X_{ij}^* - X_{ik}^*}}$$

• ML estimation : Solving the ERM with $\mathcal{L}(z) = \log(1 + \exp(z)) - z$.

Corollary

Suppose that $\mathcal{Y} \sim BTL(X^*)$ where $\|X^*\|_* \leq \sqrt{\lambda d_1 d_2}$. Under the sampling assumption,

$$\frac{1}{d_1 d_2^2} D(\mathbb{P}_{X^*} || \mathbb{P}_{\hat{X}}) \leq C \kappa \sqrt{\frac{\lambda (d_1 + d_2)}{m}} \log(d_1 + d_2).$$

Can recover the true X^* with $O(r \log^2 d)$ comparisons/user.

Preference Completion 11 / 22

ERM Lower Bound

Is the $O(r \log^2 d)$ sample complexity good?

Theorem

For any estimator \hat{X} as a function of Ω and \mathcal{Y} , there exists X^* such that

$$\mathbb{E}_{\Omega,\mathcal{Y}}R(\hat{X}) \geq R(X^*) + c \min\left\{1, \sqrt{\frac{\lambda(d_1 + d_2)}{m}}\right\},\,$$

with probability at least $\frac{1}{2}$.

Need at least O(r) comparisons/user.

^aUnder the assumption $\mathcal{L}'(0) < 0$, $\lambda \geq 1$, and $m \geq d_1 + d_2$

However, In Practice...

The size of user-item matrices?

- Netflix prize: 480,000 users × 17,000 movies
- Personalization datasets often even larger

Convex optimization needs to train and store $10^{10} \sim 10^{15}$ parameters.

Non-Convex Algorithm

$$\underset{U \in \mathbb{R}^{d_1 \times r}, V \in \mathbb{R}^{d_2 \times r}}{\text{minimize}} \sum_{(i,j,k) \in \Omega} \mathcal{L}(Y_{ijk} \cdot u_i^\top (v_j - v_k))$$

• Train a factored form $X = UV^{\top} (X_{ij} = u_i^{\top} v_j)$

Now only $(d_1 + d_2)r$ parameters

14 / 22

ICML 2015 Preference Completion

Non-Convex Algorithm

$$\underset{U \in \mathbb{R}^{d_1 \times r}, V \in \mathbb{R}^{d_2 \times r}}{\text{minimize}} \sum_{(i,j,k) \in \Omega} \mathcal{L}(Y_{ijk} \cdot u_i^\top (v_j - v_k)) + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2)$$

Add regularizer to control overfitting

ICML 2015

Non-Convex Implementation

• Updating U (while V is fixed) : Ranking SVM [Joachims, 2002] "Find the personalized weight vector u_i for each user."

$$\forall i, \quad u_i \leftarrow \arg\min_{u \in \mathbb{R}^r} \frac{\lambda}{2} \|u\|_2^2 + \sum_{j,k:(i,j,k) \in \Omega} \mathcal{L}(Y_{ijk} \cdot u^\top (v_j - v_k))$$

Can be decomposed into d_1 independent r-dimensional SVMs

• Updating V (while U is fixed) "Embed d_2 item vectors into \mathbb{R}^r ."

$$V \leftarrow \arg\min_{V \in \mathbb{R}^{d_2 \times r}} \left\{ \frac{\lambda}{2} \|V\|_F^2 + \sum_{(i,j,k) \in \Omega} \mathcal{L}(Y_{ijk} \cdot \langle A^{(ijk)}, V \rangle) \right\}$$

Also a SVM! but too large $(d_1 \times r \text{ dimensional})$

• Solution: dual coordinate ascent still O(r)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

Non-Convex Implementation

Dual Coordinate Descent [Hsieh et al., 2007]

Dual problem

$$\min_{\beta \in \mathbb{R}^{|\Omega|}, \beta \geq 0} \frac{1}{2} \left\| \sum_{(i,j,k) \in \Omega} \beta_{ijk} A^{(ijk)} \right\|_F^2 + \frac{1}{\lambda} \sum_{(i,j,k) \in \Omega} \mathcal{L}^*(-\lambda \beta_{ijk})$$

Coordinate descent: Fix all but one variables, and optimize.

$$\begin{split} \delta^* \leftarrow \arg\min_{\delta \geq -\beta_{ijk}} \frac{1}{2} \left(\|v_j + \delta Y_{ijk} u_i\|_2^2 + \|v_k - \delta Y_{ijk} u_i\|_2^2 \right) \\ &\quad + \mathcal{L}^* \big(-\lambda \big(\beta_{ijk} + \delta \big) \big), \\ \beta \leftarrow \beta + \delta^*, \\ v_j \leftarrow v_j + \delta^* Y_{ijk} u_i, \\ v_k \leftarrow v_k - \delta^* Y_{ijk} u_i. \end{split}$$

ICML 2015 Preference Completion 16 / 22

Alternating SVM (AltSVM)

While not converged do

- ullet Stochastic dual coordinate descent for V.
 - ▶ For t = 1, ..., T,
 - ▶ Randomly pick $(i, j, k) \in \Omega$.
 - ▶ Do coordinate descent for the dual variable β_{ijk} .
 - ▶ Update v_i and v_k .

O(r) computation

- ② Stochastic dual coordinate descent for U.
 - ▶ For t = 1, ..., T,
 - ▶ Randomly pick $(i, j, k) \in \Omega$.
 - ▶ Do coordinate descent for the dual variable α_{ijk} .
 - Update u_i .

O(r) computation

Alternating SVM (AltSVM)

While not converged do

- ullet Stochastic dual coordinate descent for V.
 - ▶ For t = 1, ..., T,
 - ▶ Randomly pick $(i, j, k) \in \Omega$.
 - ▶ Do coordinate descent for the dual variable β_{ijk} .
 - ▶ Update v_i and v_k .

O(r) computation

- - ▶ For t = 1, ..., T,
 - ▶ Randomly pick $(i, j, k) \in \Omega$.
 - ▶ Do coordinate descent for the dual variable α_{ijk} .
 - Update u_i .

O(r) computation

Decomposability does not matter.

Paralellization

Each coordinate descent updates at most 2r out of $(d_1 + d_2)r$ variables.

Can apply parallel asynchronous stochastic DCD without locking.¹

# cores	1	2	4	8	16
Time(seconds)	963.1	691.8	365.1	188.3	111.0
Speedup	1x	1.4x	2.6x	5.1x	8.7x

Table: Scalability of AltSVM on the binarized MovieLens1m dataset.

ICML 2015 Preference Completion 18 / 22

¹Hsieh, Yu, and Dhillon, "PASSCoDe: Parallel Asynchronous Stochastic Dual Coordinate Descent." ICML 2015.

Experiments

We compare our algorithm (with hinge loss) to

- CofiRank [Weimer et al., NIPS'07]
- Local Collaborative Ranking [Lee et al., WWW'14]
- Robust Binary Ranking [Yun et al., NIPS'14]
- SGD : Stochastic Gradient Descent on our non-convex formulation.
- Global ranking: Aggregate all comparisons and provide one ranking.

Datasets

- \bullet Binarized MovieLens1m : 6,040 imes 3,900 movies, 1m ratings
- ullet MovieLens10m : 71,567 users imes 10,681 movies, 10m ratings
- ullet Netflix prize : 480,000 users imes 17,000 movies, 100m ratings

Experimental results - Rating data

- Compared in terms of NDCG@10
- AltSVM takes all non-tying comparisons from the sampled ratings

Datasets	# ratings/user	AltSVM	SGD	Global	CofiRank	LCR
MovieLens10m	20	0.7059	0.6977	0.7264	0.7076	0.6977
	50	0.7508	0.7452	0.7176	0.6977	0.6940
	100	0.7692	0.7659	0.7101	0.6754	0.6899
Netflix	20	0.7132	-	0.7605	0.6615	-
	50	0.7642	-	0.7640	0.6527	-
	100	0.8007	-	0.7656	0.6385	-

Experimental results - Binary data

- Compared in terms of Precision@K
- AltSVM takes C non-tying comparisons for each user.

	AltSVM			SGD	RobiRank
Precision@	C = 1000	C = 2000	C = 5000		
1	0.2165	0.2973	0.3635	0.1556	0.3009
2	0.1965	0.2657	0.3297	0.1498	0.2695
5	0.1572	0.2097	0.2697	0.1236	0.2300
10	0.1265	0.1709	0.2223	0.1031	0.1922
100	0.0526	0.0678	0.0819	0.0441	0.0781

Summary

- Two algorithms for collaborative ranking from pairwise comparisons
- Convex relaxation
 - ▶ $O(r \log^2 d)$ sample complexity for arbitrarily small excess risk
- Alternating SVM through Stochastic Dual Coordinate Descent
 - Scalable and outperforming existing algorithms in ranking measures